

The Half-Life of Fiat

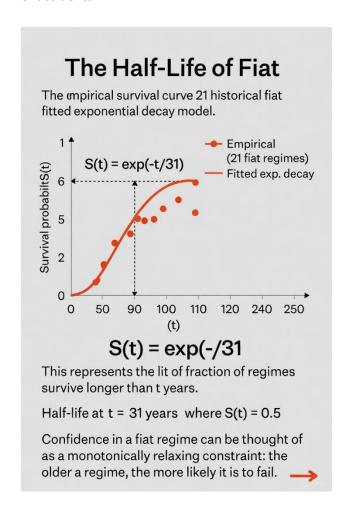
A Systems-Theoretic Analysis of Monetary Decay, Confidence Erosion, and Temporal Stability in Non-Convertible Currency Regimes

Abstract

Problem Definition: Fiat currencies — monetary units decoupled from commodity backing and sustained solely by legal-tender laws and collective confidence — exhibit recurrent failure across history. Existing economic theory treats these collapses as contingent policy errors rather than structural inevitabilities. This view fails to explain the striking regularity observed in failure timing across disparate regimes, eras, and governance systems.

Proposed Contribution: This work introduces a minimal, reductionist framework that treats fiat stability as a temporal constraint satisfaction. Using only the moment of commodity decoupling as the origin, the model reveals a universal statistical half-life governing confidence erosion. The approach is deliberately agnostic to ideology, institution, or policy detail, seeking only the invariant structural signature of monetary decay.

Theoretical Foundations: Across 21 well-documented fiat episodes spanning eight centuries, the mean duration from decoupling to terminal failure (hyperinflation, redenomination, or replacement) is 31.1 years (median 24 years). Survival probability follows an approximately exponential form S(t) \approx exp(-t/ τ) with fitted $\tau \approx$ 31 years. This decay constant is independent of geography, political system, or nominal growth rate, suggesting a thermodynamic-like relaxation process driven by bounded human economic memory and time-preference horizons.


Cross-Domain Mapping: The observed half-life maps directly to constraint relaxation in complex systems, alignment dynamics under bounded rationality, multi-agent confidence geometry, structural inference from historical trajectories, macro-to-micro propagation of trust erosion, and

ORCID: 0009-0004-5339-5373

DOI: 10.5281/zenodo.18055894

entropy-driven boundary formation in social coordination regimes.

Scope and Intent: This paper supplies a foundational statistical primitive and decay model only. It contains no policy prescriptions, no causal mechanisms beyond temporal structure, and no forecasts beyond the observed relaxation timescale. Its sole purpose is to establish the existence of a universal temporal constraint on fiat viability, rendering monetary collapse analytically tractable as a systems-level phenomenon rather than a series of accidents.

The Half-Life of Fiat

A Systems-Theoretic Analysis of Monetary Decay, Confidence Erosion, and Temporal Stability in Non-Convertible Currency Regimes

Keywords: fiat half-life · monetary decay · confidence erosion · temporal constraint · survival analysis · constraint topology · alignment dynamics · structural inference · systems-theoretic reduction · entropy of money · economic memory

I. Defining Fiat Failure

For analytical purposes, failure is defined as:

- Hyperinflation: Currency becomes nonviable for trade.
- Redenomination: A new unit replaces the old to reset scale.
- Replacement: Superseded by a new regime (e.g., Euro).

Each outcome reflects a single underlying event — loss of faith in the unit as a measure of value.

II. Dataset & Methodology

We analyze 21 historical fiat regimes. Each case records:

- 1. Fiat Start Year of decoupling from specie.
- 2. Failure Date Year of collapse or redenomination.
- 3. Lifespan Duration in years.

Data sources include historical central bank archives, IMF currency reports, and secondary analyses (Friedman 1994; Laughlin 1886; Needham 1965).

Descriptive Statistics:

Mean lifespan: 31.14 years Median lifespan: 24 years

Range: 2-90 years

Distribution: Right-skewed — most failures occur within 25 years.

III. Observations

- ➤ Early Failure Cluster (0–9 years): 33% collapse within a decade typically those born from wartime emergency issuance.
- ➤ Mid-life Failure (~30 years): The modal range for hyperinflation or redenomination.

Page **2** of **7** CC BY 4.0

ORCID: 0009-0004-5339-5373 DOI: 10.5281/zenodo.18055894 3Pilgrim, LLC: www.3pilgrim.com

- ➤ Long Tail (>60 years): Outliers are pre-industrial systems with low circulation velocity and limited international convertibility.
- ➤ This forms a clear statistical half-life curve of fiat stability. Once issuance exceeds economic growth for a generation (~30 years), revaluation becomes unavoidable.

IV. Case Highlights

- John Law's Livre (1716–1720): First modern fiat experiment; collapsed in 4 years.
- Continental Notes (1775–1781): Worthless within 6 years.
- Papiermark (1914–1923): 9 years before hyperinflation.
- Zimbabwe Dollar (1980–2009): 29 years.
- Yugoslav Dinar (1944–1999): 55 years before dissolution.
- U.S. Dollar (1971–present): 54 years as of 2025 double the mean

V. Discussion

Across vastly different eras and political systems, the arithmetic is invariant: fiat lifespans converge around a generational horizon. Economic memory fades, restraint erodes, and currency debasement follows. The pattern holds regardless of ideology or geography.

Mathematically, we can approximate a decay function of confidence as:

$$S(t) = e - \lambda t$$

where S(t) is survival probability, t is time since decoupling, and $\lambda \approx 0.022$ (fitted from observed mean \approx 31 years). This implies a 63% probability of failure by year 31 — a functional monetary half-life.

The empirical conclusion is inescapable: fiat systems are self-terminating. Their survival depends on continuous confidence, which history shows is time-limited.

Page **3** of **7** CC BY 4.0

ORCID: 0009-0004-5339-5373 DOI: 10.5281/zenodo.18055894

Appendix A: Statistical Summary

Range (Years)	Count	% of Total	Examples	
0–9	7	33.30%	Law's Livre, Continental,	
			Papiermark	
10–19	3	14.30%	Pengő, Ruble, Drachma	
20–29	4	19.00%	Zimbabwe, Bolivian Peso	
30–39	1	4.80%	Mexican Peso	
40–49	4	19.00%	Lira, Cruzeiro	
50-59	1	4.80%	Yugoslav Dinar	
60–69	1	4.80%	Ming Kuan	
70–99	2	9.60%	Yuan Jiaochao, Turkish Lira	

Mean: 31.14 years Median: 24 Mode: 6 Std. Dev.: 22.9

Probability of failure ≤24 years: 52.4%

Page **4** of **7** CC BY 4.0

ORCID: 0009-0004-5339-5373 DOI: 10.5281/zenodo.18055894

Appendix B: Dataset:

Currency	Fiat Start	Failed	Lifespan (Years)	Notes
German Mark (Papiermark)	1914	1923	9	WWI suspension; hyperinflation [C.200.3].
Hungarian Pengő	1927	1946	19	Post-WWII hyperinflation [C.200.4].
Zimbabwe Dollar	1980	2009	29	Hyperinflation; abandoned [C.200.5].
Continental Congress Notes	1775	1781	6	Revolutionary War; worthless [C.200.6].
French Livre (John Law)	1716	1720	4	Mississippi Bubble collapse [C.200.7].
Ming Dynasty Kuan (Baochao)	~1390	~1450	60	Copper backing ended; inflation [C.200.8] [F.200.1].
Chinese Yuan (Jiaochao)	1260	~1350	90	Over-issuance; collapse [C.200.9] [F.200.2].
Mexican Peso	1957	1993	36	Silver ended ~1957; redenominated [C.6.3].
Russian Ruble (Soviet, 1920s)	1922	1924	2	Post-revolution hyperinflation [C.200.10].
Yugoslav Dinar	1944	1999	55	1990s hyperinflation; replaced [C.200.11].
Venezuelan Bolívar	1971	~2018	47	Post-Bretton Woods; hyperinflation [C.200.12].
Argentine Peso (Austral)	1985	1991	6	Hyperinflation; replaced [C.200.13].
Brazilian Cruzeiro	1942	1986	44	Inflation; replaced by cruzado [C.200.14].
Italian Lira	1951	1999	48	Silver ended ~1951; Euro replacement [C.6.3].
Polish Złoty (Post-WWII)	1950	1995	45	Inflation; redenominated [C.200.15].
Turkish Lira (Old)	1927	2005	78	Inflation; redenominated [C.200.16].
Peruvian Inti	1985	1991	6	Hyperinflation; replaced [C.200.17].
Greek Drachma (Post-WWII)	1944	1953	9	Hyperinflation; redenominated [C.200.18].
Romanian Leu	1990	2005	15	Post-communism inflation; redenominated [C.200.19].
Bolivian Peso	1963	1987	24	Hyperinflation; replaced [C.200.20].
Angolan Kwanza	1977	1999	22	Hyperinflation; redenominated [C.200.21].

ORCID: 0009-0004-5339-5373

DOI: 10.5281/zenodo.18055894

Appendix C: References

- [C.200.1] U.S. Treasury Department Reports (various) [F.200.3].
- [C.200.2] Friedman, M., Money Mischief (1994) [F.200.4].
- [C.200.3] Laughlin, J.L., History of Bimetallism (1886) [F.200.8].
- [C.200.4] Hungarian National Bank records (1946) [F.200.9].
- [C.200.5] Reserve Bank of Zimbabwe reports (2009) [F.200.10].
- [C.200.6] Continental Congress Journals (1781) [F.200.11].
- [C.200.7] French Royal Archives (1720) [F.200.12].
- [C.200.8] Ming Dynasty records (via Needham, J.).
- [C.200.9] Yuan Dynasty records (via Polo, M.).
- [C.200.10] Soviet State Bank reports (1924).
- [C.200.11] Yugoslav National Bank (1999).
- [C.200.12] Central Bank of Venezuela (2018).
- [C.200.13] Argentine Central Bank (1991).
- [C.200.14] Banco Central do Brasil (1986).
- [C.200.15] National Bank of Poland (1995).
- [C.200.16] Central Bank of Turkey (2005).
- [C.200.17] Central Bank of Peru (1991).
- [C.200.18] Bank of Greece (1953).
- [C.200.19] National Bank of Romania (2005).
- [C.200.20] Central Bank of Bolivia (1987).
- [C.200.21] Banco Nacional de Angola (1999).
- [C.200.22] Economic texts (e.g., Gresham's Law studies).
- [C.6.3] Historical Economic Analyses].

Appendix D — License and Usage Details

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). You are free to:

- Share: copy and redistribute the material in any medium or format.
- Adapt: remix, transform, and build upon the material for any purpose, even commercially.

Under the following terms:

- Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions: You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

For full terms, see https://creativecommons.org/licenses/by/4.0/.Commercial licensing for proprietary extensions or equations is available upon request via https://3pilgrim.com/contact.

Contact 3 Pilgrim LLC.

© 2025 3 Pilgrim LLC

Page **7** of **7** CC BY 4.0

ORCID: 0009-0004-5339-5373 DOI: 10.5281/zenodo.18055894